首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401725篇
  免费   33545篇
  国内免费   17920篇
电工技术   23924篇
技术理论   46篇
综合类   30605篇
化学工业   65629篇
金属工艺   23243篇
机械仪表   25364篇
建筑科学   31423篇
矿业工程   12815篇
能源动力   10794篇
轻工业   30159篇
水利工程   7850篇
石油天然气   24878篇
武器工业   3345篇
无线电   43824篇
一般工业技术   43437篇
冶金工业   19720篇
原子能技术   4122篇
自动化技术   52012篇
  2024年   673篇
  2023年   5885篇
  2022年   9777篇
  2021年   15067篇
  2020年   11728篇
  2019年   9503篇
  2018年   10978篇
  2017年   12287篇
  2016年   11277篇
  2015年   15785篇
  2014年   20156篇
  2013年   24072篇
  2012年   26510篇
  2011年   29399篇
  2010年   26192篇
  2009年   24843篇
  2008年   24531篇
  2007年   23266篇
  2006年   23327篇
  2005年   20286篇
  2004年   13875篇
  2003年   12168篇
  2002年   11423篇
  2001年   10047篇
  2000年   9665篇
  1999年   9895篇
  1998年   7493篇
  1997年   6347篇
  1996年   6001篇
  1995年   5019篇
  1994年   4011篇
  1993年   2723篇
  1992年   2146篇
  1991年   1628篇
  1990年   1269篇
  1989年   1033篇
  1988年   858篇
  1987年   510篇
  1986年   405篇
  1985年   251篇
  1984年   197篇
  1983年   148篇
  1982年   132篇
  1981年   73篇
  1980年   110篇
  1979年   52篇
  1978年   19篇
  1977年   23篇
  1976年   32篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Designing a semiconductor-based heterostructure photocatalyst for achieving the efficient separation of photogenerated electron-hole pairs is highly important for enhancing H2 releasing photocatalysis. Here, a new class of Ni1−xCoxSe2–C/ZnIn2S4 hierarchical nanocages with abundant and compact ZnIn2S4 nanosheets/Ni1−xCoxSe2C nanosheets 2D/2D hetero–interfaces, is designed and synthesized. The constructed heterostructure photocatalyst exposes rich hetero-junctions, supplying the broad and short transfer paths for charge carriers. The close contacts of these two kinds of nanosheets induce a strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C, improving the separation and transfer of photo-generated electron-hole pairs. As a consequence, the distinctive Ni1−xCoxSe2 C/ZnIn2S4 hierarchical nanocages without using additional noble-metal cocatalysts, display remarkable H2-relaesing photocatalytic activity with a rate of 5.10 mmol g−1 h−1 under visible light irradiation, which is 6.2 and 30 times higher than those of fresh ZnIn2S4 nanosheets and bare Ni1−xCoxSe2 C nanocages, respectively. Spectroscopic characterizations and theory calculations reveal that the strong interaction between ZnIn2S4 and Ni1−xCoxSe2 C 2D/2D hetero-interfaces can powerfully promote the separation of photo-generated charge carriers and the electrons transfer from ZnIn2S4 to Ni1−xCoxSe2 C.  相似文献   
52.
Gecko-inspired microfibrillar adhesives have achieved great progress in microstructure design and adhesion improvement over the past two decades. Space applications nowadays show great interest in this material for the characteristics of reversible adhesion and universal van der Waals interactions. However, the impact of harsh environment of space on the performance of microfibrillar adhesives, especially the extreme low temperature, is rarely addressed. Herein, microfibrillar adhesives fabricated by phenyl containing polydimethylsiloxane (p-PDMS) elastomers with superior low-temperature reversible adhesion is proposed. p-PDMS elastomers are synthesized through one-pot anionic ring-opening copolymerization, and the resulting elastomers become non-crystallizable with excellent low-temperature elasticity. Low-temperature adhesion tests demonstrate that the adhesion strength of microfibrillar adhesives fabricated by p-PDMS elastomers can be well maintained to as low as −120 °C. In contrast, the adhesion strength of pure PDMS microfibrillar adhesive reduces more than 50% below its crystallization temperature. The low-temperature cyclic adhesion tests further demonstrate that p-PDMS microfibrillar adhesives exhibit superior reversible adhesion compared to that of PDMS microfibrillar adhesives, owing to the sustainable conformal contact and even distribution of loads over repeated cycles. This study provides a new fabrication strategy for microfibrillar adhesives, and is beneficial for the practical application of microfibrillar adhesives.  相似文献   
53.
Optical imaging has played a pivotal role in deciphering in vivo bioinformatics but is limited by shallow penetration depth and poor imaging performance owing to interfering tissue autofluorescence induced by concurrent photoexcitation. The emergence of near-infrared (NIR) self-luminescence imaging independent of real-time irradiation has timely addressed these problems. There are two main kinds of self-luminescent agents, namely inorganic and organic luminophores. Inorganic luminophores usually suffer from long-term biotoxicity concerns resulting from potential heavy-metal ions leakage and nonbiodegradability, which hinders their further translational application. In contrast, organic luminophores, especially organic semiconducting luminophores (OSLs) with good biodegradable potential, tunable design, and outstanding optical properties, are preferred in biological applications. This review summarizes the recent progress of OSLs used in NIR afterglow, chemiluminescence, and bioluminescence imaging. Molecular manipulation and nanoengineering approaches of OSLs are discussed, with emphasis on strategies that can extend the emission wavelength from visible to NIR range and amplify luminescence signals. This review concludes with a discussion of current challenges and possible solutions of OSLs in the self-luminescence field.  相似文献   
54.
Brazing, as a common method of bonding ceramic and metal, has been applied in microelectronics, aerospace, machinery and other domains extensively. The residual thermal stress in the brazed joint has direct effects on the mechanical properties of the joint, so how to control the generation of residual thermal stress has become the vital point. In this paper, the methods of reducing residual thermal stress in the brazing process in recent years are reviewed. The generation and effects of residual thermal stress in the brazed joint are introduced. Besides, the methods of detecting residual thermal stress are discussed, and different methods of reducing residual thermal stress in brazed joints are also analyzed. Finally, the future development directions of reducing residual thermal stress in the brazed joint are proposed.  相似文献   
55.
SiC is a promising functional ceramic material with many great properties. High concentrated SiC slurry with excellent rheology and stability is required in some processes of ceramic forming. In this work, the dispersion of SiC powders was obviously improved by ternary modifiers: γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560), sodium humate and sodium dodecyl sulfate (SDS). Modified SiC slurry showed the lowest viscosity of 0.168 Pa s at a solid content of 50 vol%. The maximum absolute value of zeta potential of SiC increased from 47.3 to 61.6 mV by modification. Sedimentation experiments showed that a highly stable suspension of modified SiC was obtained at pH 10. SiC green body with high density of 2.643 g/cm3 was prepared with modified powders by slip casting. X-ray photoelectron spectra (XPS) and thermogravimetry (TG) measurements indicated the adsorption of modifiers on SiC surface. Therefore, modified SiC powders could stably disperse in aqueous media due to the increase of electrosteric repulsion between particles. The novel strategy used in this study could further improve the dispersion of SiC powders.  相似文献   
56.
柔性夹钳因具有微/纳精密操作能力, 常应用于微操作系统中, 但因抓爪无法提供恒定输出力或恒力范围小, 容易造成操作对象的损伤或脱落。根据放大模块与常力模块串联的结构形式, 设计了一种具有常力特性的柔性夹钳。基于伪刚体法, 建立放大模块中桥式机构与杠杆机构的刚度和放大率数学模型, 通过对倾斜导向梁进行分析, 得到常力模块的力-位移关系式, 计算出恒定输出力为42.5 N, 输出范围为370 μm。最后, 结合不同柔顺梁的结构参数, 运用MATLAB仿真探究了各关键参数对常力特性的影响。研究结果可为常力柔性夹钳的构型设计和分析提供一定的理论支撑。  相似文献   
57.
Cellulose nanocrystals (CNCs) are a kind of sustainable nanoparticle from biomass, which are widely used as reinforcing filler and assembly building block for high-performance composites and function materials including biomaterial, optics, and so forth. Here, their unique advantages in material applications were reviewed based on their rod-like morphology, crystalline structure, dimension-related effects, and multi-level order structure. Then, we focused on the molecular engineering of CNCs, including the structure and physicochemical properties of their surface, along with surface modification methods and steric effects. We further discussed the performance-improvement and functionalization methods based on multi-component complex systems, together with the effects of surface molecular engineering on the performance and functions. Meanwhile, methods of optimizing orientation in uniaxial arrays were discussed along with those of enhancing photoluminescence efficiency via surface chemical modification and substance coordination. In the end, we prospected the design, development, and construction methods of new CNCs materials.  相似文献   
58.
Multicolor upconversion luminescence materials show significantly applications in materials science. In this paper, the novel Yb3+-sensitized Na3La(VO4)2 upconversion luminescence crystals are synthesized by the solid-state reaction method. Three primary colors upconversion luminescence are successfully achieved in Na3La(VO4)2:Yb3+,Tm3+, Na3La(VO4)2:Yb3+,Er3+, and Na3La(VO4)2:Yb3+,Ho3+ crystals excited by the single 980 nm LD. Multicolor upconversion luminescence can be obtained by simply adjusting the combination ratios of these three samples. Luminescence mechanisms of the Yb3+-sensitized system are discussed in detail. In the Na3La(VO4)2 host material, the Yb3+/Ho3+ codoped system exhibits unusual red upconversion luminescence based on the short decay time of Ho3+ ion 5I6 level, which provides the possibility of three primary color luminescence under 980 nm excitation.  相似文献   
59.
60.
Grain refinement is critical for fabricating high-quality Al-Si casting components in the application of automobile and aerospace industries,while the well-known Si-poisoning effect makes it difficult.Nbbased refiners offer an effective method to refine Al-Si casting alloys,but their anti Si-poisoning capability is far from being understood.In this work,the grain refining mechanism and the anti Si-poisoning effect in the Al-10 Si/Al-5 Nb-B system were systematically investigated by combining transmission electron microscope,first-principles calculations,and thermodynamic calculations.It is revealed that NbB2provides the main nucleation site in the Al-10 Si ingot inoculated by 0.1 wt.%Nb Al-5 Nb-B refiner.The exposed Nb atoms on the(0001)NbB2and(1-100)NbB2surface can be substituted by Al to form(Al,Nb)B2intermedia layers.In addition,a layer of NbAl3-like compound(NbAl3')can cover the surface of NbB2with the orientation relation of(1-100)[11-20]NbB2//(110)[110]NbAl3'.Both of the(Al,Nb)B2and NbAl3'intermedia layers contribute to enhancing the nucleation potency of NbB2particles.These discoveries provide fundamental insight to the grain refining mechanism of the Nb-B based refiners for Al-Si casting alloys and are expected to guide the future development of stronger refiners for Al-Si casting alloys.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号